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Abstract. The effective speed of sound is calculated for a medium

containing immovable rigid spheres arranged in a simple cubic lattice.

Long waves propagating along a lattice axis are treated. The wave

equation for the pressure is reduced to an ordinary differential equation

to which Floquet theory is applied. Both perturbation and numerical

methods are use to find.the effective speed as a function of frequency,

and to locate the pass and stop bands.
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1. Introduction

The effective speed of sound in a medium containing particles is different from that in

the ambient medium. We calculate it for the idealized case of immovable rigid spheres

with centers arranged in a simple cubic lattice. We assume that the wavelength in the

ambient medium is large compared to the distance between particles. Then the wave

equation for Lhe pressure can be reduced to an ordinary differential equation with periodic

coefficients. Floquet theory shows that there are pass bands and stop baxids along the

frequency axis. We determine them, and the sound speed in the pass bands, by both

analytical and numerical means.

"' 2. Formulation

Let the x-axis be a lattice axis with L the spacing between sphere centers along it, and

let R be the radius of each sphere. A wave of frequency Lo propagates along this axis.

By the periodicity of the lattice, the wave is symmetric about the planes y = ±L/2 and

z = ±L/2. Therefore it suffices to determine the wave within the region bounded by these

four planes, which may be thought of as a rigid-walled waveguide of square cross section

with spheres placed periodically along its axis. When wL/c is small, where c is the sound

speed in the ambient medium, the wavelength in this medium is large compared to L.

Then the pressure p is practically constant over the cross-section of the waveguide, so we

write it as p(x).

Under these conditions, p(x) satisfies the long wave equation [LI]

PZ + "p + k - k /c. 2. 1)

Here S(x) is the unobstructed cross-sectional area of the guide, given by"

5(x) = L 2 r(R 2 - X2), jxj :< R (2.2)

S(x) = L' ,  R< jx <_ L/2
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S(z + L) = S(z).

In view of (2.2), the ordinary differential equation (2.1, has a periodic coefficient. Bv

Floquet's theorem it has a solution which satisfies the condition

p(x + L) = eIKLp(X) (2.3)

for some constant K(k) which depends upon k. The complex conjugate p" of p is another

solution which satisfies (2.1) with iAK replaced by -iK. When K is real, (.2.3) represents

a wave propagating in the direction of increasing x with wavenumber K. Therefore its

phase velocity is C = w/K and its group velocity is C, = (dKA/d.,) - . In terms of k these

relations become
C _k Cg - dk (2.4")
c "K' c dK '~k (4

When K is not real p increases or decreases exponentially with z and the wave is called

evanescent or nonpropagating. In this case we say that w and k lie in a stop band, while

when K is real they lie in a pass band.

Thus our task is to find a solution p of (2.1) and a constant K(k) such that (2.3)

holds. Instead we shall specify K and seek k(K) and p satisfying (2.1) and (2.3) because

this is a standard eigenvalue problem with eigenvalue k2 .

It will be convenient to introduce dimensionless variables with L as the unit of length.

Thus we set z' = z/L, R' = RIL, k' = kL, K' = KL and S' = S/L 2 . From now on we

will use these variables, omitting the prime.

3. Perturbation expansion

The coefficient of p, in (2.1) is S_/S = 27rx/S for jzj < R and zero for R < !xi < 1,/2.

Its max6mum absolute value is 2,rR when R < (27r)-i, so it is small when R is small.

Therefore we shall solve the problem by a perturbation expansion, treating SZ/S as small

The results will be valid for R small, although we shall see that they are useful even for

R = 1/2, when adjacent spheres touch one another.
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To proceed we write

p(X) = pO(x) + pi(X) + p2(z) +... (3.1)

k2 = ko + (k), + (k2)2 + .

A term with subscript j is of jth order in S,/S. Now we substitute (3.1) into (2.1) and

equate terms of each order to obtain

p0 + k'0  0,2)

It + k = SIP - (k2)ipo, (3.3)

II SI
pi + k P2 = -tP' - (k2  - 2(k2)1P1. (3.4)

We also find that each p3 satisfies (2.3).

By writing po = eikox and then using (2.3) to determine ko we find an infinite number

of solutions:

PO = eik°, k0 = K + 27rm, m = 0,±1 ..... (3.5)

When K is real then ko is real. Before solving (3.3) we multiply it by po = e- ik z and

integrate the resulting equation from -1/2 to 1/2. After integrating by parts and using

(2.3) we find that the integral of the left side vanishes. Thus the integral of po times the

right side vanishes, so we can solve it for (k 2 )1 and obtain

(k)1 /i0  S'(x)

(k2)1= -iko dx = 0. (3.6)

Next we proceed in the same way with (3.4) and again the integral of p; times the

left side vanishes. Then the integral of po times the right side yields

(k 2 ,ko* pi(x)dx. (3.7)~(k 2)2  _=-

f 1i /2 5(X)

Now we solve (3.3) by means of a modified Green's function G(x, y), to be determined

below, and we get

pi(x) = - -k/ 1 ( , y) ,§,(}) etkOd. (3.8)
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Then we use (3.8) in (3.7) and find

(k2)2= i'k0 f1/2f 1/2 e kz s'(x)cG. (x, Y)S() e t Io Ydy dz. 3.9,
1-1/2 11/2 5(X)

The results (3.5), (3.6) and (3.9) yield the first three terms in the expansion of k2 , while

(3.5) and (3.8) yield two terms in the expansion of p(x).

To complete the calculation we must determine G which is defined by

G. + k2G = 6(X - Y) - iko( z - y)  -1/2 < x < 1/2 (3.10) :

G(1/2, y) = eiKG( - 1/2,y),
G,(1/2, y) e eiK G.(-112, y).

The solution of (3.10) is not unique when k0 satisfies (3.5). One solution is

ei iko--y) e2iK Xeiko(z-y) < 1
G(x, y) = 2iko + eiko(-) 2iko(1 - e2iK ) 2iko ' 

-  1/2, (311)

eik(Y-) xeiko(z-y) -1/2

2iko(1 - e2iK ) 2iko

By using (3.11) for G in (3.8) and (3.9) we can calculate p1(x) and (k 2 )2.

Instead of (3.11) we shall represent G, in terms of the eigenfunctions (3.5):
2&

C.(x, y) = 1: ei(K+ffm)(zy)[(K±+27rn) K + (42rm)] (3. 12)

Here we have set k0 = K + 27rn and denoted G by G,,. We shall also denote p, by p, and

(k 2 )2 by (k 2 ). 2 . Then (3.8) yields

Pni(xr) = -1 Z elK2m n[K + 27rn) -K + 2,Tm~ (3.13)
m~n

The matrix elements Vn,,, are defined by

V = 11 S?(Y) e i 2v(nm)ydy (3.14)
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Similarly (3.9) yields

(k2),2 = -(K + 2,rn) 1 (K + 27rm)IV,,.I[(K + 2irn)2 - (K + 2-n i) 2]- '. (3. 5)
m~n

Let us now set n = 0 and simplify (3.15) in the long wavelength case when K is small.

We obtain

)= 27 - IVo12Im1 - 2rm2 + O(K 2) (3.16)

The first sum vanishes, so we get
2 K__ v

(k) 02 = 2r2 5 IVomi 2 - 2 + 0(K 2 ). (3.17)
m>1

From (3.5) see that koo = K, while (3.6) yields (k2 )0 1 0. We now use these values and

(3.17) in (3.1) to get 2 . Then we take the square root, divide by K and use (2.4) to write

. = [k= 1- E IVO°nmln-2 + ' (3.1)

r1 
>1

The terms retained on the right side of (3.18) are independent of K, so to this order

CO =C.

We have evaluated Vom by numerical integration-with 1 < n < 12, for five values of

R. The results for C(R)/c from (3.18) are

C(0.8) 0- 04 = 0.966, C(0.3) C(0.2) C(0.1 = 1.000.
C C C C C

(3.19)

These results can be compared with those obtained by direct numerical solution of (2. 1)-

(2.3), which are listed in Table 1. We see that for small K the agreement is good for al.l

values of R, while for small R the agreement is good for all -alues of K. In fact since

V. = O(R 3 ), (3.18) shows that C(R)/c = 1 - O(R 6 ), so C(R)/c differs little from unit"

for R small. This is in agreement with the values in (3.19) and in Table 1.

The matrix elements Vmn given by (3.14) can be evaluated approximately when R is

small, which may be useful. First we integrate by parts in (3.14) to get
R

Vi,, = 27ri(m - n)j (logS)e2 'r'(m-)Ldz (3.20)
-q-
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In (3.20) we write logS = -f - f 2 /2 - f 3 /3 +... where f(z) = r(R 2 - x9), and obtain

R
Vn = -2ri(m - n) J f(X)e 2 (mn)zdx + o(R 5 ). (3.21)

Integration yields, with amn = 2ir(m - n),

Vmn = 4,r I - sin(a"R)-+Rc0s(amR) + O (R 5 ). (3.22)
a4 amn.

From (3.22) we see that when 1amnR < 1 then Vmn = anv + O(R5 ) where v = !,,R 3 is

the volume of a single sphere.

The results (3.13) and (3.15) are not valid when any denominator in them vanishes.

This occurs when K = nr for some integer n. Then k0 = nir and the general solution

of (3.2) satisfying (2.3) is po = cie i ko + c2e - i kox where ci and c2 are constants. To find

(k2 )1 we multiply (3.3) by es 'koZ and integrate from -1/2 to 1/2. The integral of the left

side vanishes yielding two equations:
(k2)1c - ikoV*oC2 = 0,

(3.23)
ikoVoc, + (k 2 )lc 2 = 0.

For cl and c2 to be non-zero, the determinant of their coefficients must vanish, from w~hich

we get the two solutions

1 = ±koIV.o1. (3.24)

Since S(z) is symmetric, V, 0 is imaginary. Then for (k) - (k 2 )+ (3.23) yields cl/c 2 = 1

and hence po = p+ = eikOZ(1 +ei 2 rn). Similarly for (k2 ) (k 2 )- (3.23) gives c2 /ci = -1

and pa = poeikoz(1 - -i2rnz).

Next, we calculate Pl. We write pi as eikoxvl(x) where vi(x) has period 1 and the

Fourier expansion EM am i 2Wmz where the am are constants. To find al we substitute

Pi = e&kox (EM ame i zi1" z) into (3.3), multiply by e - (k °+ 2 , i and integrate the resulting

equation from -1/2 to 1/2. In this way we obtain

= k z (V, 0 :F Y.+,,0) e,2mr..

Mi00,-n 0  (27rm + k) 2
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To calculate (k2 )2 we substitute (3.25) into (3.4), multiply by e- 'ko0 and integrate

from -L/2 to L/2. The integral of the left side vanishes and we obtain for K, = 7rn/L,

(k2 )± = n (n + 2m)rn. (n+n)m .)) (3.26)
0O,-n M$O,-n

Since Vo = if 1/2 -y sin(2-,rmx)dx we have V, o = V-mo. Also, for m = -(I + n),

(n+2m)V OV , '(,n - + 1)VIOVn+t,0. Hence the second term in (3.26) vanishes and

(3.26) becomes

nX" (n + 2m) 2 (3.27)

We now use the results (3.24) for (k 2 ) and (3.27) for (k 2 ) in (3.1) for k2 with

ko = K = nir. Denoting k by k, we get

(k (-. )2±-n r IVno +n n + 2rn IVmo12 +(.S

"2)±' - (nr')2 ± n'riV'° + 4 (n + m)n

The two positive values k+ and k- determined by (3.28) are the two boundaries of the n-th

stop band corresponding to K = nir. the width of this band is Akn = k+ -k- = IV01 +

This width is 2r nv +.. when 2r, nR is small. The values of ,r-1k± and of -.r-1Ak, are

shown in Table 3, based upon (3.28). The Vm0 were calculated by numerical integration

for m < 12 for five values of R for the first three bands, n = 1, 2, 3. The results agree well

with those in Table 2, obtained by numerical solution of the eigenvalue problem (4.1) with

N+ I= 100.

4. Numerical solutions

To solve the eigenvalue problem (2.1-2.3) numerically we discretize (2.1) on {O < x < L}

using a uniform grid G4, where h is the meshsize. The resulting second order accurate

conservative discretization scheme for (2.1-2.3) is

S+ (P,~1  ph) - S 2 (p,h - Ph,1 ) + (khh) 2 P, =0 (4.1)
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Phi= e-khLphv_, ph, e'KLpo S_ = S .

Here p is the solution at the gridpoint z, = jh, S, = S(ah) and N + 1 is the number of

gridpoints in Gh. For any given K there are N - 1 solutions kh of the eigenvalue problem

(4.1). In our calculations we took L = 1 and N - 1 = 00,

In Table 1, the numerical values of kh(R)/K are given for the first two bands. cor-

responding to K/pi in the ranges 0 to I and 1 to 2 respectively. We have seen that the

perturbation results (3.19) are in good agreement, with them for K small and also for R

small.

In Table 2, -t [kh(R)]± is given for n = 1, 2,3 where [kh] + are the two values of kh at

the ends of the n-th stop band. For comparison, Table 3 shows the corresponding values of

k given by (3.28), obtained by second order perturbation analysis, which agree well with

the values in Table 2.

5. Conclusion

We have presented two methods for calculating the pressure p@), the phase velocity C and

the p-or .gation constant K for sound waves in a medium containing fixed rigid spheres

arranged in a simple cubic lattice. One is a perturbation expansion in RIL, where R is the

radius of a sphere and L is the distance between centers. The other is a direct numerical

• .rmethod. The results of the two methods agree well both when RIL is small and also when

KL is small.

The results show that there are pass bands and stop bands along the axis of kL =

wL/c. The boundaries of the first three stop bands are given in Tables 2 and 3' for five

values of R/L. The values of C/c in the first two pass bands are given in Table 1 for

five values of R/L and ten values of KL/r. They show that C/c < 1 in the first pass

band, and that C/c decreases as RIL increases and as KL increases. In the second band

C/c > 1 except near the upper edge of the band. Within this band C/c still decreases as

C' KL increases, but it increases as RIL increases.

4-4 9



kh1/K
* K/7r R=0.1 R=0.2 R=0.3 R=0.4 R=0.5

0.1 1.000 0.999 0.991 0.967 0.889
0.2 1.000 0.999 0.991 0.966 0.885

l" 0.3 1.000 0.999 0.991 0.964 0.880

0.4 1.000 0.999 0.990 0.961 0.873

0.5 1.000 0.998 0.989 0.957 0.862

0.6 1.000 0.998 0.987 0.931 0.847

V 0.7 1.000 0.998 0.984 0.940 0.824
0.8 1.000 0.997 0.978 0.922 0.793
0.9 1.000 0.995 0.964 0.889 0.747

1.0 0.996 0.970 0.912 0.825 0.686
1.0 1.004 1.030 1.091 1.191 1.371

1.1 1.000 1.004 1.032 1.106 1.259
1.2 1.000 1.001 1.017 1.066 1.187
1.3 1.000 1.001 1.010 1.045 1.139
1.4 1.000 1.000 1.007 . 1.033 1.108

1.5 1.000 1.000 1.005 1.026 1.086
1.6 1.000 1.000 1.004 1.021 1.070
1.7 1.000 1.000 1.002 1.017 1.052

1.8 1.000 0.999 1.001 1.014 1.048
1.9 0.996 0.982 0.998 1.012 1.039

2.0 0.996 0.982 0.982 1.005 1.018

TABLE 1.

Values of kh/K obtained by numerical solution of the eigenvalue problem
(4.1) with N + 1 = 100 for various values of K and R.

A



K/br R=0.1 R=0.2 R=0.3 R=0.4 R=0.5

'1 (k")- 0.9959 0.9698 0.9117 0.827 0.697

1 7r-(kh)+  1.004 1.0298 1.0907 1.191 1.371

7r-1Akh 0.0082 0.0601 0.179 0.366 0.685

S(kA)
-  1.9924 1.9648 1.9634 2.0095 2.035

2 7r-1 (kh)+ 2.0068 2.0357 2.046 2.0337 2.116

7r-r1kh 0.0144 0.0709 0.00828 0.0242 0.081

r-1(kh)-  2.990 2.9843 2.9751 2.9975 2.986

3 ,-(k")+ 3.0076 3.0156 3.0306 3.0245 3.101

0.0176 0.0313 0.0555 0.027 0.115

TABLE 2.

Boundaries (k' )- and (kh)+ and widths Akh = (kh)+ - (k')- , of the first
three stop bands for five values of R, obtained by numerical solution of
(4.1) with N + 1 = 100

.1
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K/ir R=0.1 R=0.2 R=0.3 R=0.4 R=0.5
7- k) 0.9959 0.9698 0.9117 0.827 0.697

1 7r'k) 1.0041 1.0298 1.0907 1.190 1.366

7r-'k( 2 ) 0.0082 0.06 0.179- 0.363 0.669

7r-k) 1.9927 1.9652 1.9637 2.0099 2.036

2 '-lk) 2.0072 2.0361 2.0462 2.0341 2.116

7r'-Ak(2) 0.0145 0.0709 0.4092 0.0242 0.08

7r-1 k-) 2.990 2.9855 2.976 2.9992 2.98z

3 7r'k() 3.0088 3.0166 3.0314 3.025 3.104

_,_- 1Ark(2 ) 0.0188 0.0311 0.0554 0.0258 0.119

TABLE 3.

Boundaries and widths of the first three stop bands calculated by second
order perturbation theory (3.28). Numerical integration was used for cal-
culating the V, 0, and only terms with m < 12 were included.
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